Avocado/Soybean Unsaponifiables Prevent Osteoarthritic Subchondral Osteoblasts-Induced Cartilage Degradation.

Christelle Sanchez¹, Michelle A. Deberg¹, Nathalie Piccardi², Philippe Msika², Jean-Yves L. Reginster¹ and Yves E. Henrotin¹

1 Bone and Cartilage Research Unit, Liège, Belgium
2 Laboratoires Expanscience, Epernon, France

Introduction. Previously, we have demonstrated that osteoblasts from the sclerotic subchondral bone express a particular phenotype characterized by an overproduction of IL-6, TGF-β1, ALP and OC but similar amount of IL-1β than non sclerotic osteoblasts.

Aim of Study. To determine the effects of avocado/soybean unsaponifiables (ASU) on osteoarthritic osteoblasts-induced chondrocyte metabolism dysregulation.

Methods. Human chondrocytes were isolated from OA cartilage and cultured in alginate beads for 4 days in the absence or in the presence of OA subchondral osteoblasts in monolayer (co-culture system). Before co-culture, OA osteoblasts were incubated or not with 10 µg/ml ASU for 72 hours. Aggrecan (AGG), type II collagen (COL2), matrix metalloproteases (MMP)-3 and -13 mRNA levels in chondrocytes were quantified by real time polymerase chain reaction. Aggrecan production was assayed by a specific enzyme amplified sensitivity immunoassay (EASIA).

Results. OA osteoblasts induced a significant inhibition of AGG production (-27%, p < 0.001) and AGG (-36%, p < 0.001) and COL2 (-78%, p < 0.001) gene expression but significantly increased MMP-3 and MMP-13 gene expression by chondrocytes in alginate beads (1.65 and 2 times, respectively, p < 0.001). Pre-treatment of OA osteoblasts with ASU fully prevented the inhibitory effects of OA osteoblasts on AGG production (p < 0.01), and increased by 2-fold the COL2 expression by chondrocytes (p < 0.001). The treatment of OA osteoblasts with ASU did not modify the expression of MMPs by chondrocytes.

Conclusions. These results demonstrate that OA subchondral osteoblasts could contribute to cartilage degradation by stimulating chondrocytes to produce more matrix metalloproteases and by inhibiting their production of AGG. ASU prevent osteoblasts-induced matrix molecules inhibition, suggesting a new mechanism of action for this drug.